
Simplified Modeling Language

Yarco Wang

2016/05

Revision History

Revision Date Author(s) Description
0.2 2016/06/02 Yarco Wang word correction, add “*” grammar
0.1 2016/05 Yarco Wang first edition

Abstract

SML, the short name of Simplified Modeling Language, which is also named as
Simple Modeling Language or Small Modeling Language, is a modeling language
used in modern development process. Actually, it is not just a modeling language,
it is a part of my XP(Extreme Programming) experiment.

It contains only three types of diagram: Class-ER Like Diagram, Use Case Dia-
gram and Activity Diagram.

1 Workflow
For better understanding the SML, let’s first take a look at the core of XP (colored in
blue), in the chart below.

A project begins from a great idea. In XP, it is named as “Simple Design”. Normally,
in our case, it should be a file with an explanation of the idea, in which it may only take
less than 100 lines.

And then, the analyst defines the initial version diagrams. After finished writing
the doc “Interface Definition”, the pair of the developing group begin to work: one
for coding, and the other for writing tests.

1

When during the coding or discussing the requirements, they may find some in-
formation lost in the doc, it should also be refracted in the doc – then the doc is not
just the analyst’s task, it becomes something in continuously improving.

Core of
Extreme Programming Refracting

Test-Driven
Development

Simple
Design

Pair
Programming

Class-ER Like
Diagram

Use Case
Diagram

define task priority

Activity
Diagram

Interfaces
Definition

Analyst

current task based

refracting

first edition

an idea

Guide

maybe
generate
some ideas

Member

some ideas

Nth edition

XP process

SML diagram

Text Doc

Ideas, also Text

Simplified Modeling Language

2 Diagrams
2.1 Basic Ideas
Normally when a project started from an idea, it could be more or less than 20 lines
text. We accept it, and consider it as just a process to be more clear. The modeling is
not just for building the models at once before the coding start. It is a way continuously
responding to the current software design.

So when at the beginning, it is a design; then, it turns to be a doc and communica-
tion tool; and at the end, it becomes a part of the doc.

Why we are lazy on this? Because sometimes, we can not restrain ourself: as an
analyst, he may lost in his imagination, then the doc becomes something large but not
really useful. So there are some rules on this when considering drawing our SML:

2

• If unnecessary , we are not going to do that;
• If something unclear, we are not going to do that (just leave “...”);
• If the cost of dealing the thing than the profit we could get, we are

not going to do that;
• Try to make the thing re-usable and add more functions on it;
• When drawing, we should be an artist, but not the machine which

creates similar products, each diagram should be unique when at first
glance;

• We draw things in “tree” like pattern, not “graph” like pattern (“tree”,
“graph” here is the something in data structure);

• We prefer curve lines, and even you can put flower on the diagram to
make it special, So everything good for remembering the diagram are
encouraged;

• Colored thing is welcomed to figure out current tasks (or priority).

2.2 Class-ER Like Diagram
The Class-ER Like Diagram is a diagram which merges class diagram(UML), Entity
Relationship Diagram, mind map and web CRUD OPs’ thinkings together.

When the project started from 20 lines text, there are different types of items in
the description. You can recognize them as “object” or “action”. Ex.:

This is a guestbook where guest could write down comments.

Here, the guestbook and comments are the “object”; write down is the “action”. We ignore
those actions cause for now the requirements are not very clear, we only care about
those objects.

For more complex project, actually, each object should be represented as a diagram
when the requirements become more clear; but here, cause it is very simple. We put
guestbook and comments together.

3

2.2.1 Entities

A Guestbook

name string, the name of
the guestbook
...

Comment (comment)

content text
author string, email or
author name
ctime diatomite, create
time

A Guestbook

In this diagram (it is just like the class diagram in UML), but we noticed several
differences:

• The title of the object is not very strict (here, “A Guestbook”). You can add
extra text in the title between the parenthesis (here, “Comment (comment)”’).
The meaning between the parenthesis depends on the team. Here we defined it
as a tablename. You can even add more, ex. “Comment (comment, cache)” means
it should also be cached or optimized.

• The format of the attribute contains a name, the type and the description. It is not
very strict also. Actually, the type is also a part of the description. You can even
add more like “default to null”.

• The “A Guestbook” entity also has a field “...” which figure out the requirements
are not clear. But it won’t stop us to do a prototype.

4

2.2.2 Connections And Other

A Guestbook*

name string, the name of
the guestbook
comments integer,
number of the comments
...

Comment (comment)

content text
author string, email or
author name
ctime diatomite, create
time

A Guestbook

comments + 1

We are going to add more. The relationship (connection) between the entities
normally figure out the inheritance between different classes in UML. And they also
have “association” relationship etc. But we use ER relationship to replace it. The
reasons are all listed here:

• In modern concepts, we are going to avoid the inheritance because of strong
coupling and dependence. We also invent “inject” for that purpose. Then it is
in someway reducing the importance of old style relationship. But ER pattern
is more simple, clear and easy to remember.

• The connection is represented as curve, but not a direct line.

• The entity “A Guestbook” is colored in orange to figure out it is the root (to
make you focus on it).

• The mark “*” after “A Guestbook” means there are details somewhere not in
current chart.

• The text “comments + 1” above entity “Comemnts” figure out that when creating
(CRUD), it should trigger relevant action (but you don’t have to add more for
RUD OPs, it is just a remind).

5

2.3 Use Case Diagram
Use case diagram is the same as in UML, but we add the color to figure out the task
current we focus on (or the priority). (The very important thing is you should keep
the idea in mind – it is dynamic, not fixed.)

Visitor

login / logout

write
comments

The use case diagram also mean there are several interfaces and unit tests behind
each of the use case.

2.4 Activity Diagram
The activity diagram is also the same as in UML, but it is only to explain the details in
Use Case Diagram, and also for current tasks – that means it changes quite often more
than use case diagram.

3 Text Doc
Just like when at beginning, we only have one line text. After we did previous diagrams,
we are going to write the interfaces which is very clear in our use case diagram and
activity diagram. But of cause, it is in text format (so we are not going to describe it
here). As you can view in the main workflow, the pair of the developers’ work depends
on this. Then, they will also do response to the doc (the diagrams or the text files) if
anything require changing.

4 Contact Author
You can contact author through yco_w at me.com about the SML if you do have good
idea.

He also accept the donation through paypal using the same email address. Even
USD $1 is welcomed .

6

